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A B S T R A C T

Two-dimensional Ruddlesden-Popper (RP) phases receive the focus of extensive research because of their unique 
optical and electrical properties. Accurate prediction of stable RP phases can expedite finding new RP compo
sitions with improved properties for practical applications. However, most attempts are limited to finding new 
RP phases by employing time-consuming computational approaches. Although descriptors such as cationic radius 
ratio or Goldschmidt tolerance factor can be used alternatively, they have shown limitation in predicting stable 
RP phases. In this study, thus we develop a novel RP tolerance factor (tRP) derived through machine learning 
based process, which exhibits high accuracy in classifying RP and non-RP phases. The tRP is a simple form based 
solely on ionic radii and incorporates two meaningful parameters: inverse cationic radius ratio and inverse 
octahedral factor. Additionally, tRP shows a linear correlation with first-principles density functional theory 
formation energies, allowing us to determine the relative stability of RP phases beyond mere classification. By 
utilizing tRP as a descriptor, we propose the new compounds that showing potential for RP phases, and we expect 
it will pave the way for the discovery of novel RP phases for future optoelectronic applications.

1. Introduction

Ruddlesden-Popper (RP) phases, known as half-shifting stacks of 
two-dimensional (2D) perovskite layers, have emerged as a promising 
material class due to their superior environmental stability and versatile 
optical and electrical properties [1–5]. These properties include super
conductivity, tunable bandgap, high carrier mobility and ferroelec
tricity. The unique combination of these properties makes RP phases as 
advantageous candidates across diverse applications [6–10]. For 
instance, RP phases offer tunable bandgaps and strong photo
luminescence boosting the performance of light-emitting diodes and 
lasers [6,7]. In the realm of solar cells, both high power conversion ef
ficiency (PCE) and high stability is achieved by using RP phases as 
capping layers [8,9]. Given the superior properties of RP phases and 
their potential in various applications, there is a growing interest in 
exploring new RP phases that exhibit improved stability and desirable 
properties.

Recently, various computational approaches have been employed to 
expediate the discovery of new RP phases. For example, Zhang et al. 
utilized machine learning (ML) techniques to identify factors influ
encing the formation of RP phases and validated their findings through 

the synthesis of new RP phases [11]. Hu et al. combined 
high-throughput density functional theory (DFT) calculations with ML 
approaches to identify new RP phases suitable for photovoltaic appli
cations [12]. Meftahi et al. developed new RP phase films for solar cells 
using the high-throughput fabrication and optimization strategy aided 
by ML methods [13].

However, these studies require extensive time and computational 
resources, limiting their accessibility. In contrast, descriptors offer an 
easier way to predict the stability of perovskite materials without the 
need for intensive computational calculations. One common descriptor 
used to predict the stability of single-layer RP phases (A2BX4) is the 
cationic radius ratio (c), composed of the ionic radii of A and B ions (rA, 
rB) [14]. 

c =
rA

rB 

While it provides a straightforward means of assessing stability based 
on A and B ions, neglects the impact of X ions. As an alternative, the 
Goldschmidt tolerance factor (t) incorporating the impact of X ions, has 
been utilized to predict the stability of RP phases [3,15]. The t is defined 
as: 
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t =
rA + rB
̅̅̅
2

√
(rB + rX)

where rA, rB, and rX are the ionic radii of A, B, and X ion, respectively. 
Despite its broad application and easy accessibility, recent studies have 
mentioned certain limitations of the t [16,17]. The generally accepted 
ranges for the t is not directly applicable to RP phases and result in poor 
accuracy, especially when determining the stability of RP phases con
taining heavier halides (Table S3) [18–21].

Therefore, accurately predicting the stability of compounds as RP 
phases remains a challenging task necessitating the development of 
more refined descriptors. In this study, we introduce the RP tolerance 
factor (tRP), a groundbreaking predictive descriptor derived from a so
phisticated ML-based methodology. The tRP achieves exceptional clas
sification accuracy in differentiating RP from non-RP phases by 
integrating the inverse form of two parameters: c and octahedral factor 
(μ). This unique integration allows tRP to accurately forecast stable RP 
phases, offering a simple yet effective tool for stability prediction. Our 
comparisons of tRP with DFT results demonstrate that tRP not only clas
sifies RP phases but also assesses their degree of stability, enabling the 
identification and proposal of new promising RP compounds. We believe 
that tRP can be used as a general metric for finding innovative RP ma
terials with applications in optoelectronics and beyond.

2. Methods

2.1. Construction of datasets

The dataset, comprising 930 compounds, is constructed from 
experimental sources: 854 from the Handbook of Inorganic Substances, 
8 from the 2D Perovskites Database, and 68 from the Inorganic Crystal 
Structure Database (ICSD) and various research papers [22–25]. For the 
RP phases, K2NiF4-type compounds are considered for A2BX4, 
Sr3Ti2O7-type for A3B2X7, and Sr4Ti3O10-type for A4B3X10 compounds. 
For non-RP phases, we identify the most prevalent compound types 
sharing the same stoichiometry as their RP counterparts; this includes 
six types for A2BX4 (spinel, olivine, K2SO4, Th3P4, high-Tc, and CaV2O4), 
four types for A3B2X7 (SrTb2Fe2O7, La3Mn0.5SiS7, La3CuSiS7, and 
Ca2MgSi2O7) and four types for A4B3X10 (K2Sb2Sn3S10, Cs4Mg3F10, 
Ca4Ti3O10, and Ba4Zr3S10). In the case of organic-inorganic hybrid 
compounds, the 2D Perovskite Database is used, which contains 
organic-inorganic 2D perovskite materials [25]. Within this database, 
we select only compounds whose organic cation sizes were known [26]. 
As a result, we obtained 8 organic-inorganic RP hybrid perovskites 
containing methylammonium (CH3NH3

+, MA+), ethylammonium 
(CH3CH2NH3

+, EA+), and ammonium (NH4
+) as organic cations. Within 

the scope of the tRP extraction process, among the 544 all-inorganic 
compounds, 476 sourced from the Handbook of Inorganic Substances 
are utilized as the training set, and the remaining compounds allocate as 
the test set.

2.2. SISSO classification framework

In this study, sure independence screening and sparsifying operator 
(SISSO) classification framework with stratified k-fold (5-fold) cross- 
validation is implemented to extract common descriptors [27]. Fea
tures and labels for compounds in each fold are randomly split into a 
training set and a test set, and the training set serves as the input set of 
SISSO. In each fold of the cross-validation, SISSO does not use the test set 
for generating or refining descriptors. Each SISSO is trained on a distinct 
training set. Then, a combination of algebraic operations considering 
three levels of complexity (Φ1, Φ2 and Φ3) along with a maximum 

feature complexity of 10 and using the operator set H ≡
{

I, + , − , × ,

/exp,log ̅√
,− 1,2

}
, is repeatedly executed to construct a descriptor space 

(feature space) in each fold. The descriptor space increases approxi
mately from 6 × 101 at Φ1, to 3 × 103 at Φ2, and up to 1 × 107 at Φ3. Out 
of the vast descriptor space, sure independence screening (SIS) scores 
the descriptors based on the correlation magnitude between the feature 
and the target and selects only top ranked as much as the subspace size 
(100,000). According to the SISSO process, the selected descriptors go 
through a sparsifying operator (SO) that finally selects the best nD (n >
1) descriptors. However, in this study, only the SIS step of SISSO is 
performed by setting the output dimension of SISSO up to 1D de
scriptors. Then, 100,000 descriptors are extracted as the output of SISSO 
from each fold. Of the total 5 (5-fold) × 100,000, common descriptors to 
all folds, which are descriptor candidates, are finally obtained.

2.3. DFT calculations

DFT calculations are performed to obtain the formation energy 
(Eform) of compounds with a RP phase (K2NiF4-type) backbone structure. 
The DFT calculations are implemented using the Vienna Ab-initio 
Simulation Package (VASP) code [28,29]. The projector augmented 
wave (PAW) method with the Perdew-Burke-Ernzerhof (PBE) general
ized gradient approximation (GGA) for the exchange and correlation 
potentials is utilized [30–32]. At the Γ-point, the Monkhorst-Pack 
k-point sampling of 5 × 5 × 5 grid with energy cutoff of 520 eV is 
used [33]. For the fully relaxed structure, the convergence criterion of 
energy and force are 10− 6 eV and 0.001 eV/ Å, respectively.

3. Results and discussion

3.1. Extraction of tRP through a 3-step process

Our dataset consists of 930 compounds with RP phase stoichiometry 
(An+1BnX3n+1) from n = 1 to n = 3, where n represents the thickness of 
the perovskite layer. Of which, the most extensively studied are the all- 
inorganic A2BX4 compounds (Fig. 1a). Therefore, to extract the tRP, we 
focus on the 544 all-inorganic A2BX4 compounds, while the remaining 
compounds are used for evaluating the derived tRP. Among 544 A2BX4 
compounds, 195 are in the RP phases and 349 are in the non-RP phases. 
The A-site in these compounds includes 41 elements, spanning the 
lanthanide series, alkali metals, alkaline earth metals, and a small 
number of transition metals. The B-site includes 43 elements, predom
inantly composed of transition metals. The X-site comprises chalcogens 
(O, S, Se, and Te) and halogens (F, Cl, Br, and I) (Fig. 1b). For more 
information, see the supplementary materials.

To extract the tRP, a 3-step process is designed using the dataset of 
A2BX4 compounds (Fig. 2). In the first step, the dataset along with 
atomic and ionic features serve as inputs (Table S1). The features include 
Shannon ionic radii (rA, rB, and rX), oxidation states (nA, nB, and nX), 
electronegativities (xA, xB, and xX), valence electrons (vA, vB, and vX), 
and ionization energies (iA, iB, and iX) [34]. Important features among 
these are identified via SHaply Additive exPlanations (SHAP), which 
ranks features according to their importances [35]. In this analysis, 
feature importances are quantified based on how each feature influences 
the decision to classify a material as forming the RP phase. Then, the rA, 
rB, rX and xX are selected as the most important features (Fig. S1). Second 
step involves SISSO classification framework with 5-fold 
cross-validation applied to the datasets and selected features [27]. To 
minimize the risk of data leakage, we carefully set aside 68 data points 
out of a total 544 as a completely independent test set, while the 
remaining 476 data points are used for 5-fold cross-validation process. 
SISSO outputs the top 100,000 descriptors for each fold. In our 5-fold 
cross-validation, the 100,000 descriptors outputted by SISSO are not 
all equal. Hence, we extract common descriptors present in all fold 
outputs (Fig. S2). Third step considers three factors: classification ac
curacy, complexity, and unit to identify the best simple unitless 
descriptor among the common ones (Table S2). First of all, a random 
forest classifier is used to assess each descriptor’s classification accuracy 
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[36,37]. For this evaluation, we employ two measures: accuracy on the 
independent 68-point test set and the average accuracy on the test set 
within the 5-fold cross-validation. By aligning the descriptors based on 
their independent test accuracy and then confirming with the average 
cross-validation test accuracy, we ensure a robust performance evalua
tion. Then, descriptor analysis is conducted to evaluate the complexity 
of each descriptor by considering the number of features and mathe
matical symbols and to identify the unit of descriptors. As a result, we 
extract tRP, the best simple descriptor that demonstrates high classifi
cation accuracy, simplicity, and unitless.

3.2. High accuracy and two key parameters defining tRP

The tRP is expressed as follows: 

tRP =

(
rB

rA

)2

+

̅̅̅̅̅
rX

rB

√

where rA, rB, and rX are the ionic radii of A, B, and X ion, respectively. We 
take a closer look at tRP and find that it contains two important terms: 
inverse cationic radius ratio (1/c, c = rA/rB) and the inverse octahedral 
factor (1/μ, μ = rB/rX). The term c evaluates the relative sizes of A-site 
and B-site ions. The term μ evaluates whether a B-site cation can enter an 
octahedron outlined by X-site anions. We note here that the ionic radii 
depend on the oxidation states. Since chalcogenides and halides have 
different oxidation states of cations, the distribution of ionic radii 
constituting the RP compounds are also different. Accordingly, halides 
and chalcogenides exhibit different distributions of tRP values. There
fore, we establish separate tRP criteria to classify RP and non-RP phases 
for chalcogenides and halides. The criteria for tRP are established by 

analyzing the decision criteria ranges derived from a random forest 
classifier. The optimal criterion that gives the highest classification ac
curacy is then selected. The tRP criterion is identified as 1.83 for chal
cogenides and 1.72 for halides. Compounds with tRP values below the 
criteria are classified as stable RP phases, while those with values above 
are classified as non-RP phases.

Fig. 3a illustrates the distribution on RP and non-RP phases ac
cording to tRP values of chalcogenides (left) and halides (right). The tRP 
achieves an overall classification accuracy of 90 % for both chalcogen
ides and halides. Specifically, the classification accuracy in the RP 
phases is 93 % for chalcogenides and 81 % for halides. The lower ac
curacy observed in the halides compared to the chalcogenides is due to 
the fact that halide compounds is more flexible for the formation of RP 
phases with B-site cations. In the non-RP phases, the classification ac
curacy is 88 % for chalcogenides and 96 % for halides. While t and c do 
not clearly distinguish between RP and non-RP phases, tRP shows much 
higher accuracy on distinguishing between RP and non-RP phases 
(Fig. S3).

Fig. 3b illustrates the distribution of RP and non-RP phases according 
to the two parameters (1/c, 1/μ) incorporated within tRP. The inverse 
relationship between 1/c and 1/μ is revealed in this figure. In the case of 
RP phases, 1/c is mainly distributed in the range of 0.4 to 0.6 and 1/μ is 
mainly distributed in the range of 1.3 to 2.6. The majority RP phases are 
discernibly present in these ranges satisfying the proposed tRP criteria. 
The presence of halide RP phases with low 1/μ values (yellow star) 
represents that the halide octahedral cage is more flexible, allowing 
large B-site cations to enter as well. In contrast, non-RP phases are 
widely distributed in area where 1/c or 1/μ values are high individually 
or the sum of the two values is high. This indicates that the formation of 

Fig. 1. Overview of dataset and elemental composition. (a), On the right, the datasets of RP and non-RP phases n = 1 (A2BX4), n = 2 (A3B2X7) and n = 3 (A4B3X10) 
are illustrated. The darker colors represent RP phases and lighter colors represent non-RP phases as shown in the color legend. On the left, the A2BX4 compounds are 
displayed. The pink color represents RP phases and blue color represents non-RP phases. Darker shades denote chalcogenides, while lighter shades represent halides. 
(b), Distribution of elemental composition across the A, B, and X sites within the A2BX4 dataset is depicted in blue, yellow, and pink, respectively.
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RP phases cannot be clearly distinguished by using 1/c or 1/μ separately 
and the sum of two values, should be small as what we proposed in tRP 
criteria. Therefore, the synergy of 1/c and 1/μ is important to estimate 
the formation of RP phases and tRP is a good indicator for RP phase 
formation.

3.3. Correlation between tRP and Eform

To investigate the ability of tRP for evaluating the degree of stability 
of the RP phases beyond simple classification, we further compare it 
with Eform, which is a generally accepted criterion judging stability of 
materials. Fig. 4 shows the correlation between DFT-calculated Eform and 
tRP. The Eform is expressed in eV/f.u (where f.u stands for formula unit) 

Fig. 2. A 3-step process to extract the best simple descriptor. Each step consists of the inputs shown in yellow boxes, the methods shown in blue boxes, and the 
outputs shown in the red boxes. In the 1st step, datasets along with their ionic and atomic features are considered. SHAP analysis is performed on these inputs to 
select important features. In the 2nd step, the datasets and selected features are served as inputs. The SISSO algorithm coupled with k-fold cross-validation is then 
used to derive common descriptors. In the 3rd step, the dataset and common descriptors are used as inputs. Then, random forest classifier and descriptor analysis are 
conducted to extract the tRP.
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and quantifies the energy required to form a compound from its pre
cursors. The Eform is calculated as follows: 

Eform = Etotal
bulk −

(
aEtot

AkXl
+ bEtot

BmXn

)

where Etotal
bulk is the total energy of the A2BX4 compound with the RP phase 

backbone structure, and a and b are coefficients multiplied by the pre
cursors to maintain the A2BX4 stoichiometry. The chosen precursors are 
binary compounds (AkXl and BmXn) commonly used in 2D perovskite 

Fig. 3. Classification of A2BX4 compounds through tRP. (a), On the left, a stacked format is used to display the RP and non-RP phases for chalcogenides (C), which 
appear in red and blue, respectively. On the right, a stacked format is used to display the RP and non-RP phase for halides (H), which appear in yellow and gray, 
respectively. The dotted lines represent the tRP criteria. Compounds below the tRP criteria are stable RP phases, whereas those above are non-RP phases. (b), Displays 
the distribution of A2BX4 compounds in relation to the 1/c and 1/μ. The color bar shows tRP. values. Red and yellow stars represent RP phases in C and H, 
respectively. Blue and gray circles represent non-RP phases in C and H, respectively. The gray dotted line indicates tRP criteria in C and H.
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synthesis, taking into account the oxidation states of the ions involved 
[22,38,39]. The subscripts k, l, m and n are determined by these 
oxidation states. Etot

AkXl 
and Etot

BmXn 
represent the total energies of these 

precursors.
The positive linear relationship between Eform and tRP is shown in 

Fig. 4 with a correlation coefficient 0.85 for chalcogenides and 0.89 for 
halides. This suggests that as the tRP value decreases below its criterion 
the Eform value also decreases and the possibility of forming a stable RP 
phases increase. So, our study clearly shows that tRP can be an indicator 
representing degree of stability to the RP phase. In Fig. 4a and 4b, the 
color regions correspond to where both Eform and tRP consistently classify 
compounds as either stable RP phases (lower color region) or unstable 
RP phases (upper color region). The white regions denote areas where 
the classifications based on Eform and tRP are inconsistent.

We further investigate the white region to understand the origin of 
the inconsistency. In the upper white region of chalcogenides (Fig. 4a), a 
significant portion (37 out of 41) of these compounds contain lanthanide 
elements, leading misclassification of Eform or tRP. This indicates that DFT 

calculations are limited in predicting Eform of lanthanide compounds and 
tRP also has difficulty classifying lanthanide compounds [40,41]. In the 
lower white region for chalcogenides (Fig. 4a) and halides (Fig. 4b), 
inconsistencies are also observed. For the RP phases in the lower white 
region, tRP incorrectly predicts them as non-RP phases by slightly 
exceeding the criteria. This indicates that tRP criteria should be used in 
caution since it is difficult to accurately predict the stability of RP phase 
near tRP criteria. For the non-RP phases in the lower white region, DFT 
calculations incorrectly predict the negative Eform for them. This in
dicates that some compositions are difficult to accurately predict Eform as 
Eform is highly dependent on precursor selection.

We further examine the lower color region to determine the possi
bility of forming RP phases among non-RP phases. In this region, 21 
chalcogenide and 3 halide non-RP phases are classified as RP phases 
from both Eform and tRP. Especially, Ba2GeO4, EuNaGeO4, Sr2NiO2Cl2, 
NaNdGeO4 and Cs2CdBr4 show lower Eform in the RP-phase backbone 
structures than their original structures (Fig. S4). This suggests that they 
can adopt the RP phases if proper synthesis method is applied. Thus, we 
encourage material scientists to try synthesizing them into new RP 
compounds.

3.4. Expansion of tRP to higher n-value RP phases

Lastly, we expand our study to assess the viability of applying tRP not 
only to A2BX4 (n = 1) compounds, but also to A3B2X7 (n = 2) and 
A4B3X10 (n = 3) compounds. A total of 930 compounds with different n- 
values are evaluated using tRP. The tRP criteria for each n-value are 
identified by analyzing decision criteria ranges (Fig. 5). For chalcogen
ides, the tRP criteria are identified as 1.83 (n = 1), 1.82 (n = 2), and 1.79 
(n = 3), and the classification accuracy according to the tRP criteria is 89 
% for all cases. The decrease in tRP criteria with higher n-value indicates 
that the probability of forming a stable RP phase decreases as the n-value 
increases, consistent with findings from previous studies [42,43]. This 
represents that although the n-value is not directly included in tRP, tRP 
can still be applied to higher n-value RP phases with different tRP 
criteria. In the case of halides, a criterion of n = 1 is uniformly applied 
across all n-values because data for non-RP phases are not available for n 
= 2 and n = 3. Our results show that most RP phases fall within the 
expected range, yielding an 87 % classification accuracy. Thus, we 
believe that tRP can be applied to classify higher n-value RP phases using 
different tRP criteria.

4. Conclusion

In this study, we have employed a systematic 3-step process that 
integrates SHAP, SISSO with k-fold cross-validation, and random forest 
classifier with descriptor analysis to develop a simple and accurate 
descriptor, tRP. It is designed to distinguish between RP and non-RP 
phases with high classification accuracy by effectively integrating two 
relevant parameters (c and μ) based solely on ionic radii. A crucial aspect 
of tRP is its linear correlation with Eform, indicating its ability to identify 
compounds with potential as new RP phases. Furthermore, tRP exhibits 
the capability to assess the stability of high n-value RP phases.

Evaluating stability of new compositional materials is a fundamental 
step in discovering new materials [44–46]. For material scientists, 
quickly and reliably assessing stability is a crucial yet challenging task. 
Our study clearly shows that tRP developed through a systematic 3-step 
process can efficiently and effectively predict the RP phase stability of 
compounds. Although methods such as backward elimination can be 
used as a valid approach for feature selection, we find that our simple 
and systematic 3-step process sufficiently yields a robust and meaningful 
descriptor, tRP. Given that our 3-step process can be applied to develop 
tolerance factor for various phases, our study can be extended to search 
for novel materials in different fields. In summary, our study provides 
not only a straightforward tRP that enables rapid design and discovery of 

Fig. 4. Correlation between Eform and tRP. The correlation of Eform and tRP is 
shown, (a), for chalcogenides (C) and (b), for halides (H). Stars represent RP 
phases, while circles indicate non-RP phases. Dotted lines depict the line of best 
fit, along with their correlation coefficients.
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novel RP phases but also a systematic 3-step process that can be used to 
develop tolerance factors for estimating the stability of new composi
tional materials, potentially revolutionizing materials discovery in 
various applications.
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